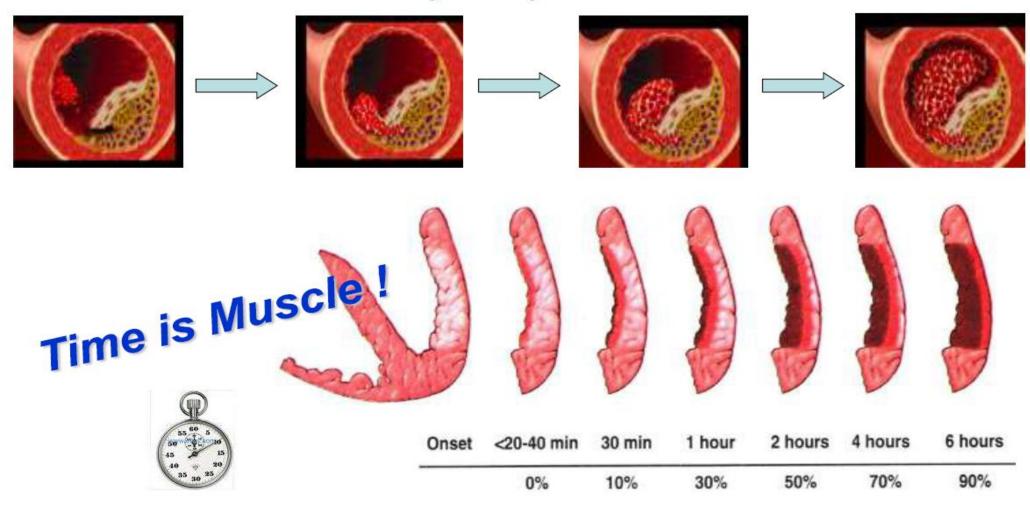
SNUH

서울대학교병원

Reperfusion Injury: How Can We Reduce It?

Hyun-Jai Cho, M.D., Ph.D


Cardiovascular Center & Department of Internal Medicine Seoul National University Hospital

--- 2016. 4. 15.

RICT Innovative Research Institute for Cell Therapy

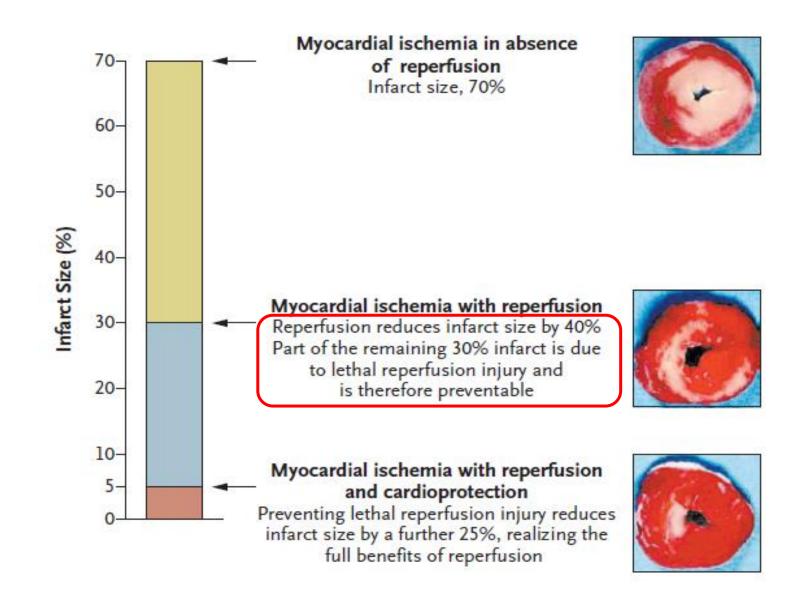
Acute Myocardial Infarction

Rupture of atheromatous plaque in the coronary artery Platelet aggregation and thrombus formation Occlusion of the coronary artery

Time is Myocardium !

Treatment flow for STEMI

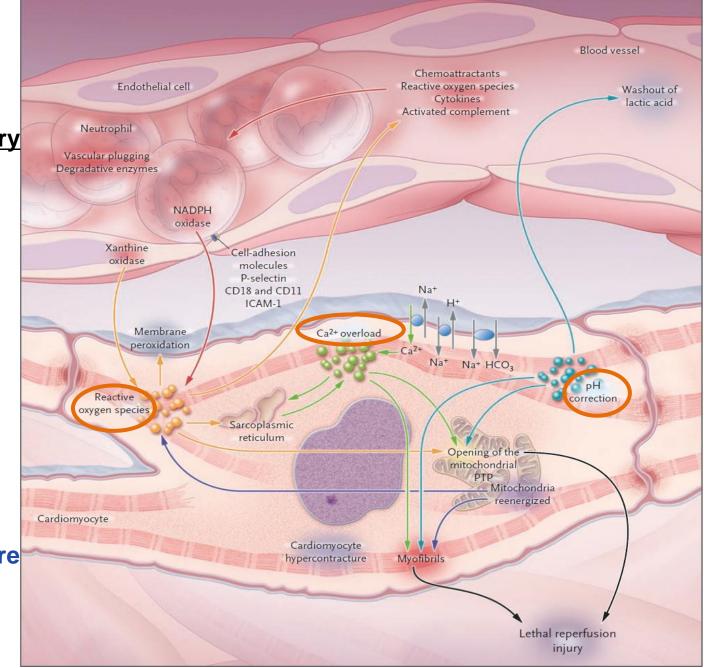
Early reperfusion therapy

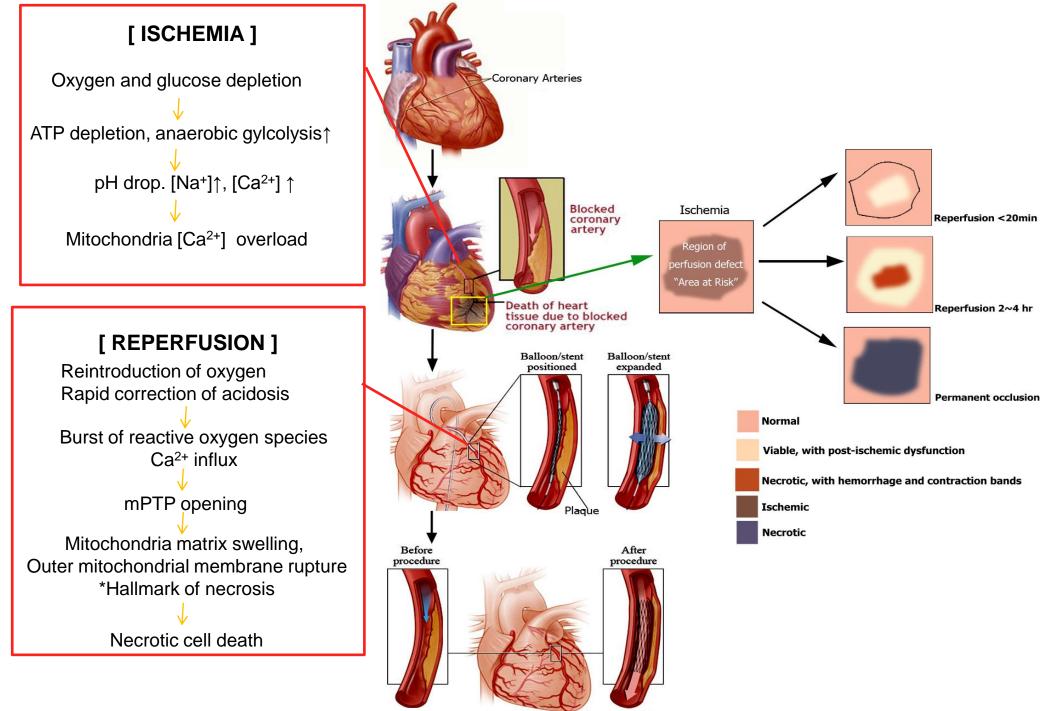

- : the first priority in the treatment of STEMI
- thrombolytic therapy
- Percutaneous coronary intervention (PCI)

Reperfusion

Reperfusion immediately causes myocyte necrosis and sarcolemmal disruption, with the leakage of cell contents into the extracellular space.

Apoptosis is a coordinated involution of myocytes that circumvents the inflammation associated with **necrotic cell death**. Because apoptosis is an energy-dependent process, cells can be forced to switch to a necrotic pathway if energy levels are depleted below critical levels.

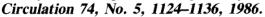

In more chronic settings, autophagy can contribute to the mechanisms of myocyte death.

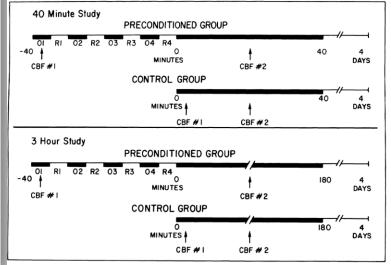


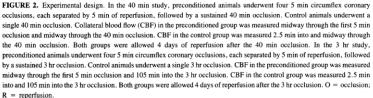
Ischemia-reperfusion injury

- 1. Oxygen paradox
- 2. Calcium paradox
- 3. pH paradox
- 4. Inflammation due to necrosis

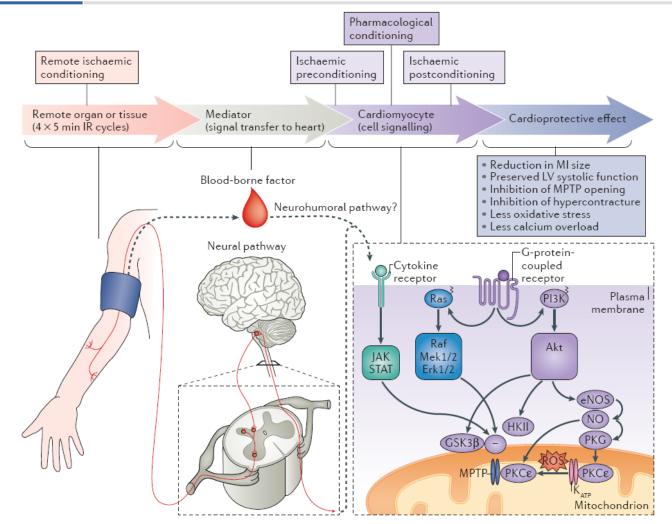
Mitochondrial Permeability Transition Pore (mPTP) opening

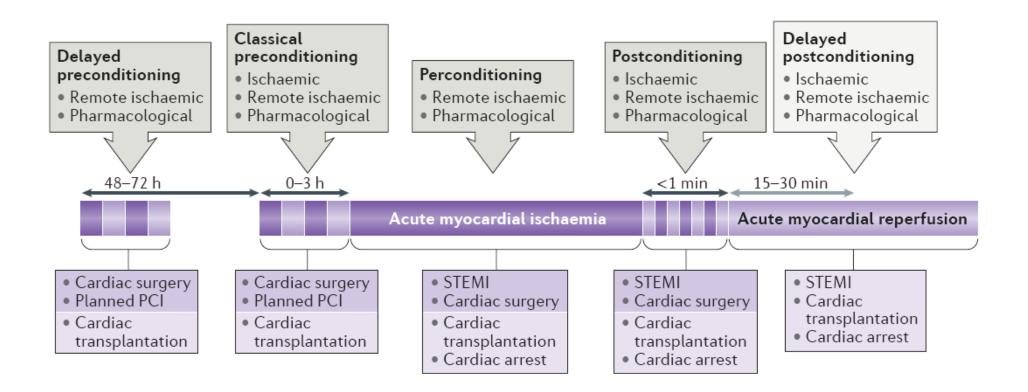

Ischemic conditioning to prevent I/R injury


The 30-year anniversary of the discovery of "ischemic preconditioning"


Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium

CHARLES E. MURRY, B.S., ROBERT B. JENNINGS, M.D., AND KEITH A. REIMER, M.D., PH.D.


ABSTRACT We have previously shown that a brief episode of ischemia slows the rate of ATP depletion during subsequent ischemic episodes. Additionally, intermittent reperfusion may be beneficial to the myocardium by washing out catabolites that have accumulated during ischemia.¹ Thus, we proposed that multiple brief ischemic episodes might actually protect the heart from a subsequent sustained ischemic insult. To test this hypothesis, two sets of experiments were performed. In the first set, one group of dogs (n = 7) was preconditioned with four 5 min circumflex occlusions, each separated by 5 min of reperfusion, followed by a sustained 40 min occlusion. The control group (n = 5)received a single 40 min occlusion. In the second study, an identical preconditioning protocol was followed, and animals (n = 9) then received a sustained 3 hr occlusion. Control animals (n = 7)received a single 3 hr occlusion. Animals were allowed 4 days of reperfusion thereafter. Histologic infarct size then was measured and was related to the major baseline predictors of infarct size, including the anatomic area at risk and collateral blood flow. In the 40 min study, preconditioning with ischemia paradoxically limited infarct size to 25% of that seen in the control group (p < .001). Collateral blood flows were not significantly different in the two groups. In the 3 hr study, there was no difference between infarct size in the preconditioned and control groups. The protective effect of preconditioning in the 40 min study may have been due to reduced ATP depletion and/or to reduced catabolite accumulation during the sustained occlusion. These results suggest that the multiple anginal episodes that often precede myocardial infarction in man may delay cell death after coronary occlusion, and thereby allow for greater salvage of myocardium through reperfusion therapy.


Signaling pathways of ischemic conditioning

- 1) Reperfusion Injury Salvage Kinase (RISK) pathway (PI3K–Akt and Mek1/2–Erk1/2)
- 2) Survivor Activator Factor Enhancement (SAFE) pathway (TNF and JAK-STAT),
- 3) cGMP-protein kinase G (PKG) pathway
- → inhibitory effect on mitochondrial permeability transition pore (mPTP) opening

Hausenloy DJ, et al. Nat Rev Cardiol 2016

Ischemic conditioning to prevent I/R injury

*Clinical implication

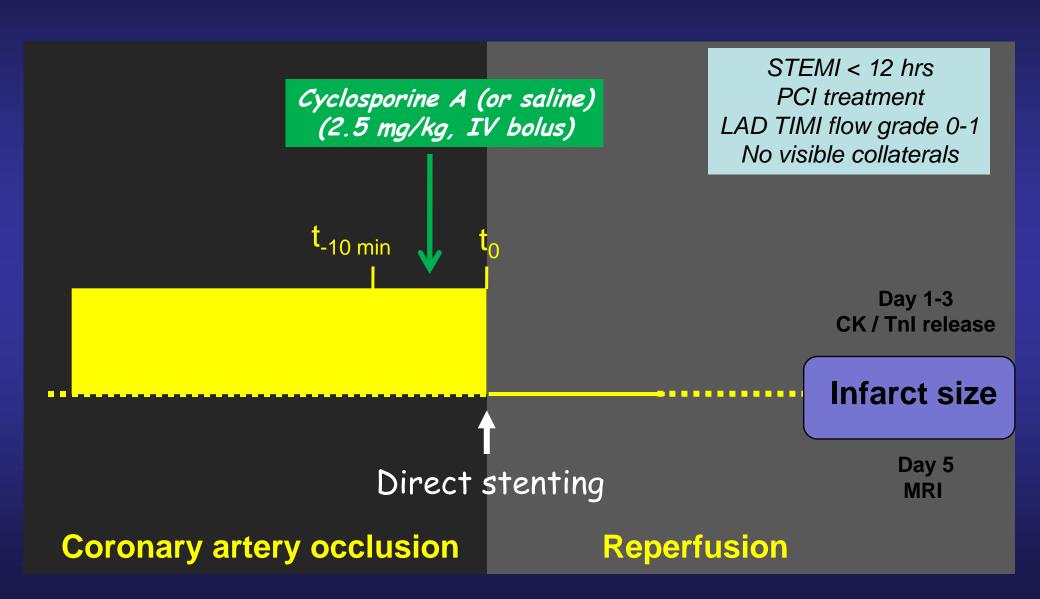
- 1) Ischemic in situ conditioning & post-conditioning
- 2) Pharmacological cardioprotection

Clinical results of post-conditioning (STEMI)

Study	n	Patient selection	IPost protocol	Main outcome	Notes
Positive studies					
Staat <i>et al</i> . (2005) ⁴⁹	30	 LAD/RCA only ≤6 h ischaemic time TIMI 0 pre-PPCI TIMI 2–3 post-PPCI No collaterals No angina in 48 h 	 4 × 1 min inflations and deflations of angioplasty balloon upstream of stent Direct stenting 	 36% reduction in MI size (72 h AUC CK) Better blush grade 	 First clinical study to translate IPost into clinical setting
Ma et al. (2006)⁵¹	94	• All STEMI • ≤12 h ischaemic time • TIMI 3 post-PPCI	 3 × 0.5 min inflations and deflations of angioplasty balloon 	 27% and 32% reductions in MI size (peak CK and CK–MB) Better TIMI flow, WMSI, and endothelial function Less malondialdehyde 	• This study showed an alternative IPost protocol to be effective
Yang et al. (2007) ⁵²	41	 All STEMI ≤12 h ischaemic time TIMI 0–1 pre-PPCI No collaterals 	 3 × 0.5 min inflations and deflations of angioplasty balloon 	 27% reduction in MI size (72 h AUC CK) 27% reduction in MI size (SPECT at 1 week) 	 First clinical study to demonstrate MI size reduction on SPECT
Thibault <i>et al</i> . (2008)⁵³	38	 LAD/RCA only ≤6 h ischaemic time TIMI 0 pre-PPCI TIMI 2–3 post-PPCI No collaterals No angina in 48 h 	 4 × 1 min inflations and deflations of angioplasty balloon upstream of stent Direct stenting 	 40% and 47% reductions in MI size (72 h AUC CK and troponin I) 39% reduction in MI size (SPECT at 6 months) 7% increase in LVEF (echo at 1 year) 	• First clinical study to demonstrate long-term benefit with IPost
Lonborg et al. (2010)⁵⁴	118	 All STEMI ≤12 h ischaemic time TIMI 0–1 pre-PPCI TIMI 3 post-PPCI 	• 4 × 0.5 min inflations and deflations of angioplasty balloon within the stent	 31% increase in myocardial salvage ratio 19% relative reduction in MI size (MRI at 3 months) 41% reduction in patients developing heart failure 	 First clinical study to demonstrate MI size reduction on MRI Largest positive study to date

Clinical results of post-conditioning (STEMI)

Study	n	Patient selection	IPost protocol	Main outcome	Notes		
Neutral or negative studies							
Dwyer <i>et al.</i> (2013) ¹⁶¹	102	 All STEMI <6 h ischaemic time TIMI 0–1 pre-PPCI No collaterals 	• 4×0.5 min inflations and deflations of angioplasty balloon at site of lesion	 No difference in myocardial salvage or MI size (MRI at day 3) 	 First neutral study using an alternative IPost protocol 		
Hahn et al. (2014) POST ⁶¹	700	• All STEMI • <12 h ischaemic time • TIMI 0–1 pre-PPCI	• 4 × 1 min inflations and deflations of angioplasty balloon at site of lesion	 No difference in ST-segment resolution, myocardial blush grade, peak CK–MB levels or MACE (death, MI, severe heart failure, or stent thrombosis) No difference in MI size or myocardial salvage (MRI at day 3) in substudy of 111 patients¹⁶² 	• Largest and first multicentre study		
Eitel et al. (2015) LIPSIA CONDITIONING ¹⁴⁴	333	• All STEMI	• 4 × 1 min inflations and deflations of angioplasty balloon at site of lesion versus control	 No difference in MI size, myocardial salvage (MRI at day 3), or MACE at 6 months 	 Improved myocardial salvage when IPost combined with RIC 		
Ongoing studies							
DANAMI 368	1,252	 All STEMI <12 h ischaemic time TIMI 0–1 pre-PPCI 	• 4 × 0.5 min inflations and deflations of angioplasty balloon at site of lesion	• Primary outcome is all-cause death and heart failure at 2 years	 Recruitment complete Currently in follow-up; results available early 2016 		


Clinical results of post-conditioning (STEMI)

Study	n	Patient selection	IPost protocol	Main outcome	Notes			
Neutral or negative studies								
Dwyer et al. (2013) ¹⁶¹	102	 All STEMI <6 h ischaemic time TIMI 0–1 pre-PPCI No collaterals 	• 4 × 0.5 min inflations and deflations of angioplasty balloon at site of lesion	 No difference in myocardial salvage or MI size (MRI at day 3) 	 First neutral study using an alternative IPost protocol 			
Hahn <i>et al</i> . (2014) POST ⁶¹	700	• All STEMI • <12 h ischaemic time • TIMI 0–1 pre-PPCI	• 4 × 1 min inflations and deflations of angioplasty balloon at site of lesion	 No difference in ST-segment resolution, myocardial blush grade, peak CK–MB levels or MACE (death, MI, severe heart failure, or stent thrombosis) No difference in MI size or myocardial salvage (MRI at day 3) in substudy of 111 patients¹⁶² 	• Largest and first multicentre study			
Eitel et al. (2015) LIPSIA CONDITIONING ¹⁴⁴	333	• All STEMI	• 4 × 1 min inflations and deflations of angioplasty balloon at site of lesion versus control	 No difference in MI size, myocardial salvage (MRI at day 3), or MACE at 6 months 	 Improved myocardial salvage when IPost combined with RIC 			
Ongoing studies								
DANAMI 3 ⁶⁸	1,252	 All STEMI <12 h ischaemic time TIMI 0–1 pre-PPCI 	 4 × 0.5 min inflations and deflations of angioplasty balloon at site of lesion 	 Primary outcome is all-cause death and heart failure at 2 years 	 Recruitment complete Currently in follow-up; results available early 2016 			

ACC 2016, DANish-iPOST (DANAMI 3-iPOST): DANish Study of Optimal Acute Treatment of Patients with ST-segment Elevation Myocardial Infarction: iPOST conditioning during primary PCI, Denmark •Results: Ischemic post-conditioning after STEMI did not result in a reduction in death rates or HF hospitalization. Hausenloy DJ, et al. Nat Rev Cardiol 2016

Piot et al. (NEJM 2008)

Objective: determine whether cyclosporine A can reduce infarct size in STEMI patients

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effect of Cyclosporine on Reperfusion Injury in Acute Myocardial Infarction

Christophe Piot, M.D., Ph.D., Pierre Croisille, M.D., Patrick Staat, M.D., Hélène Thibault, M.D., Gilles Rioufol, M.D., Ph.D., Nathan Mewton, M.D., Rachid Elbelghiti, M.D., Thien Tri Cung, M.D., Eric Bonnefoy, M.D., Ph.D., Denis Angoulvant, M.D., Christophe Macia, M.D., Franck Raczka, M.D., Catherine Sportouch, M.D., Gerald Gahide, M.D., Gérard Finet, M.D., Ph.D., Xavier André-Fouët, M.D., Didier Revel, M.D., Ph.D.,

Gilbert Kirkorian, M.D., Ph.D., Jean-Pierre Monassier, M.D., Geneviève Derumeaux, M.D., Ph.D., and Michel Ovize, M.D., Ph.D.

ABSTRACT

Experimental evidence suggests that cyclosporine, which inhibits the opening of mitochondrial permeability-transition pores, attenuates lethal myocardial injury that occurs at the time of reperfusion. In this pilot trial, we sought to determine whether the administration of cyclosporine at the time of percutaneous coronary intervention (PCI) would limit the size of the infarct during acute myocardial infarction.

We randomly assigned 58 patients who presented with acute ST-elevation myocardial infarction to receive either an intravenous bolus of 2.5 mg of cyclosporine per kilogram of body weight (cyclosporine group) or normal saline (control group) immediately before undergoing PCI. Infarct size was assessed in all patients by measuring the release of creatine kinase and troponin I and in a subgroup of 27 patients by performing magnetic resonance imaging (MRI) on day 5 after infarction.

From Hôpital Arnaud de Villeneuve. Montpellier (C.P., T.T.C., C.M., F.R., C.S., G.G.); Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon (P.C., P.S., H.T., G.R., N.M., E.B., D.A., G.F., X.A.-F., D.R., G.K., G.D., M.O.); Service de Cardiologie, Mulhouse (R.E., J.-P.M.); and INSERM Unité 886, Lyon (H.T., G.R., D.A., G.F., G.D., M.O.) — all in France. Address reprint requests to Dr. Ovize at Hôpital L. Pradel, Hospices Civils de Lyon, 59, Blvd. Pinel, 69394 Lyon CEDEX 03, France, or at ovize@sante.univ-lyon1.fr.

N Engl J Med 2008;359:473-81. Copyright © 2008 Massachusetts Medical Society.

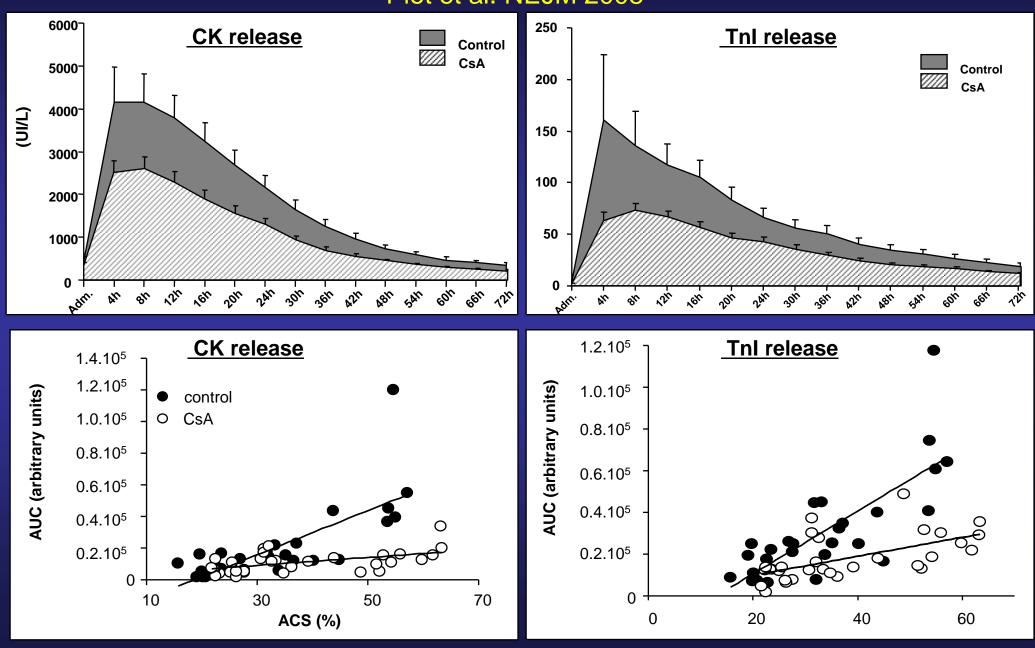
on

The cyclosporine and control groups were similar with respect to ischemia time, the size of the area at risk, and the ejection fraction before PCI. The release of creatine kinase was significantly reduced in the cyclosporine group as compared with the control group (P=0.04). The release of troponin I was not significantly reduced (P=0.15). On day 5, the absolute mass of the area of hyperenhancement (i.e., infarcted tissue) on MRI was significantly reduced in the cyclosporine group as compared with the control group, with a median of 37 g (interquartile range, 21 to 51) versus 46 g (interquartile range, 20 to 65; P=0.04). No adverse effects of cyclosporine administration were detected.

Objective: dete

In our small, pilot trial, administration of cyclosporine at the time of reperfusion was associated with a smaller infarct by some measures than that seen with placebo. These data are preliminary and require confirmation in a larger clinical trial.

size in STEMI patients


STFMI < 12 hrs PCI treatment AD TIMI flow grade 0-1 No visible collaterals

Day 1-3 CK / Tnl release

Infarct size

Day 5 **MRI**

Reduction of cardiac enzymes release by cyclosporine A Piot et al. NEJM 2008

Clinical results of pharmacological cardioprotection

Cyclosporine before PCI in Patients with Acute Myocardial Infarction

T.-T. Cung, O. Morel, G. Cayla, G. Rioufol, D. Garcia-Dorado, D. Angoulvant,
E. Bonnefoy-Cudraz, P. Guérin, M. Elbaz, N. Delarche, P. Coste, G. Vanzetto,
M. Metge, J.-F. Aupetit, B. Jouve, P. Motreff, C. Tron, J.-N. Labeque, P.G. Steg,
Y. Cottin, G. Range, J. Clerc, M.J. Claeys, P. Coussement, F. Prunier, F. Moulin,
O. Roth, L. Belle, P. Dubois, P. Barragan, M. Gilard, C. Piot, P. Colin, F. De Poli,
M.-C. Morice, O. Ider, J.-L. Dubois-Randé, T. Unterseeh, H. Le Breton, T. Béard,
D. Blanchard, G. Grollier, V. Malquarti, P. Staat, A. Sudre, E. Elmer,
M.J. Hansson, C. Bergerot, I. Boussaha, C. Jossan, G. Derumeaux,
N. Mewton, and M. Ovize

970 patients: acute anterior ST-segment elevation myocardial infarction (STEMI) who were undergoing PCI within 12 hours after symptom onset

*CicloMulsion: NeuroVive Pharmaceutical, Sweden

CONCLUSIONS

In patients with anterior STEMI who had been referred for primary PCI, intravenous cyclosporine did not result in better clinical outcomes than those with placebo and did not prevent adverse left ventricular remodeling at 1 year. (Funded by the French Ministry of Health and NeuroVive Pharmaceutical; CIRCUS ClinicalTrials.gov number, NCT01502774; EudraCT number, 2009-013713-99.)

Cyclosporine A in Reperfused Myocardial Infarction

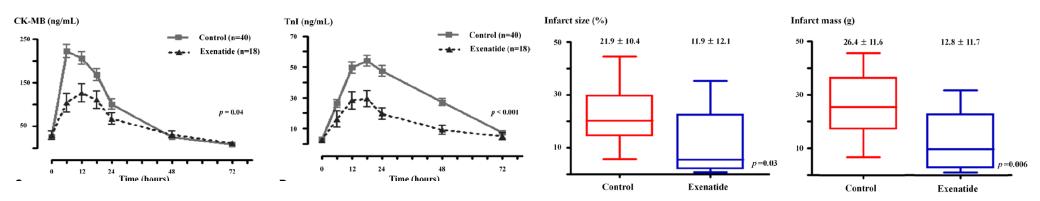
CrossMark

The Multicenter, Controlled, Open-Label CYCLE Trial

Filippo Ottani, MD,^a Roberto Latini, MD,^b Lidia Staszewsky, MD,^b Luigi La Vecchia, MD,^c Nicola Locuratolo, MD,^d Marco Sicuro, MD,^e Serge Masson, PHD,^b Simona Barlera, MS,^b Valentina Milani, PHD,^b Mario Lombardi, MD,^f Alessandra Costalunga, MD,^g Nadia Mollichelli, MD,^h Andrea Santarelli, MD,ⁱ Nicoletta De Cesare, MD,^j Paolo Sganzerla, MD,^k Alberto Boi, MD,¹ Aldo Pietro Maggioni, MD,^m Ugo Limbruno, MD,ⁿ on behalf of the CYCLE Investigators 410 patients: large ST-segment elevation MIwithin 6 h of symptom onset*CsA (Sandimmune): Novartis, Switzerland

CONCLUSIONS In the CYCLE (CYCLosporinE A in Reperfused Acute Myocardial Infarction) trial, a single intravenous CsA bolus just before primary percutaneous coronary intervention had no effect on ST-segment resolution or hs-cTnT, and did not improve clinical outcomes or LV remodeling up to 6 months. (CYCLosporinE A in Reperfused Acute Myocardial Infarction [CYCLE]; NCT01650662; EudraCT number 2011-002876-18) (J Am Coll Cardiol 2016;67:365-74)

Targeting Myocardial IR Injury — The Search Continues

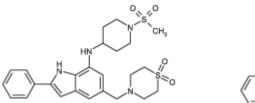

Cardioprotective Effects of Exenatide in Patients With ST-Segment–Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

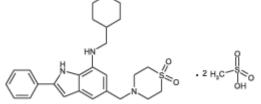
Results of Exenatide Myocardial Protection in Revascularization Study

Jong Shin Woo, Weon Kim, Sang Jin Ha, Jin Bae Kim, Soo-Joong Kim, Woo-Shik Kim, Hyun Ju Seon, Kwon Sam Kim

58 patients: acute STEMI within the 12 h of the onset of symptoms *exenatide: 10 μ g SC and IV bolus 10 μ g injection of BYETTA® (Amylin-Lilly) 5 min before the onset of reperfusion. In addition, 10 μ g SC bid on the following 2 days.

Conclusions—In patients with ST-segment–elevation myocardial infarction, adjunctive exenatide therapy with primary percutaneous coronary intervention was associated with reduction of infarct size and improvement of subclinical left ventricular function. (*Arterioscler Thromb Vasc Biol.* 2013;33:2252-2260.)

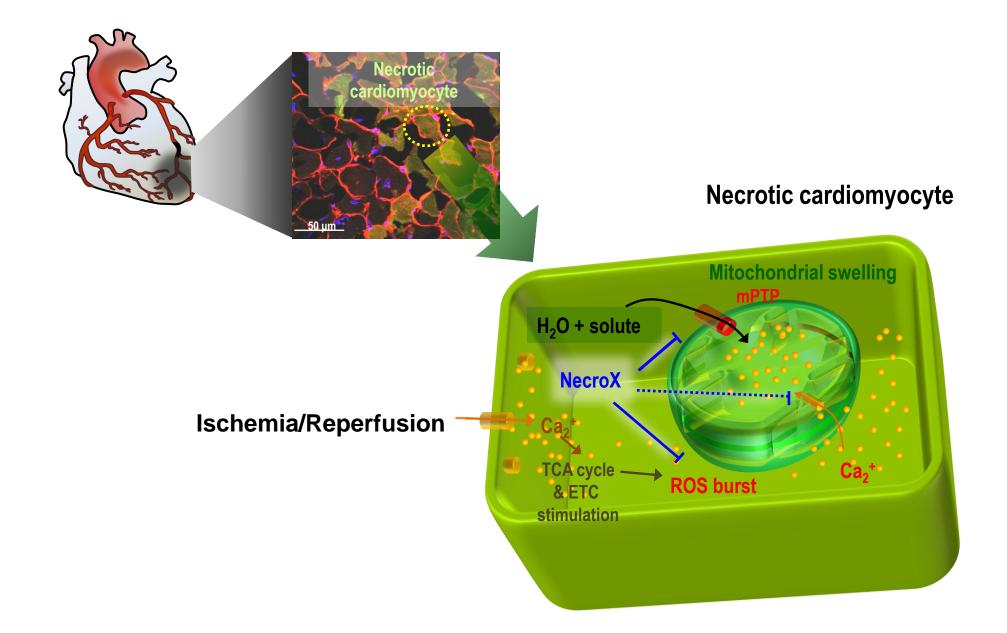



Targeting Myocardial IR Injury — The Search Continues

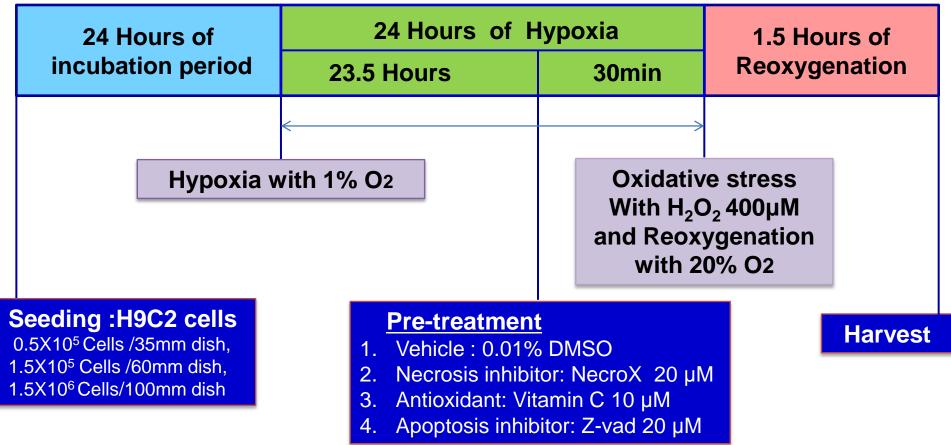
Necrosis inhibitor, NecroX ?

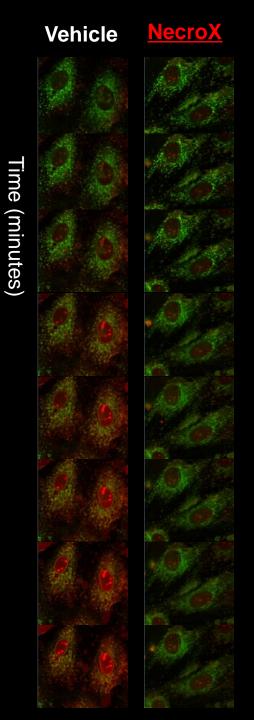
NecroX-7; from LG life sciences (SH Kim, PhD)

Derivative and combination of products



Anti-necrotic effect by some mechanisms via 1) Strong antioxidant 2) Inhibition of HMGB1 3) Mitochondrial ROS and ONOO⁻ scavenger

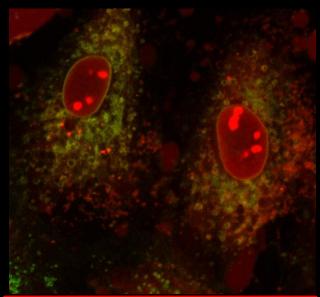

Well-known the effect on hepatic ischemia/reperfusion injury Transplant Proc 2010

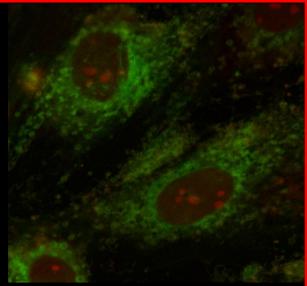

Mechanism of necrosis inhibitor, NecroX

In vitro Design

Hypoxia-Oxidative stress/Reoxygenation (**H-O/R**) model using H9C2 cell (myoblast cell line)

Measurement of mitochondrial Ca²⁺ influx

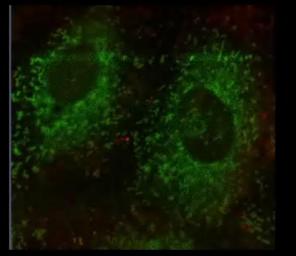

Hypoxia 24h + Oxidative stress with H2O2


Mitotracker : mitochondria

Rhod-2 : Ca2+ influx

Vehicle treated group showed prominent calcium influx (red stain) in the swollen mitochondria via mPTP opening

Necrosis Inhibitor revealed protective effect on mPTP opening under I/RI

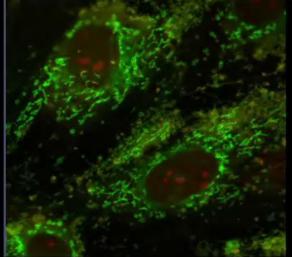


Measurement of mitochondrial Ca²⁺ influx

Under hypoxia and oxidative stress condition

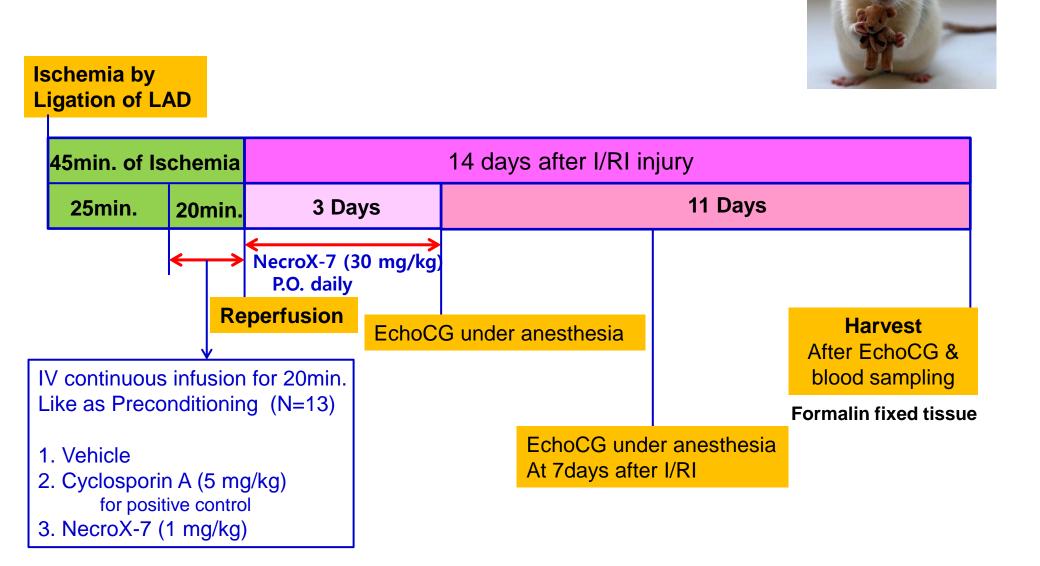
Vehicle (3~5 minutes)

[Vehicle-treated H9C2 cells]

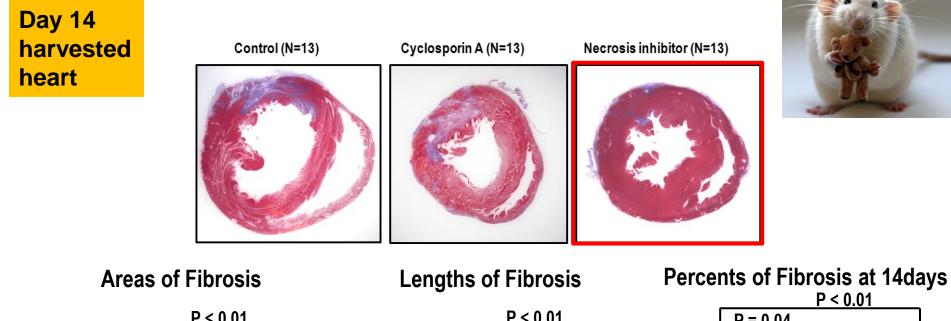


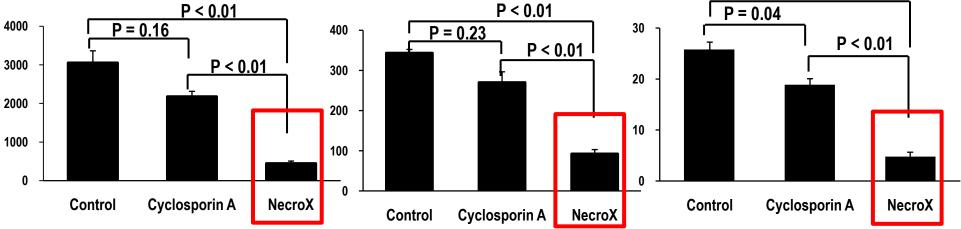
- * Condition: Hypoxia (24hrs) Reoxygenation (90mins)
- * Red (Rhod-2 fluorescence): free Ca2+ level

* Green (Mitotracker): mitochondrial shape H9C2 cells pretreated with vehicle (DMSO) exhibiting rapid increase in Ca2+ influx and mitochondrial swelling.

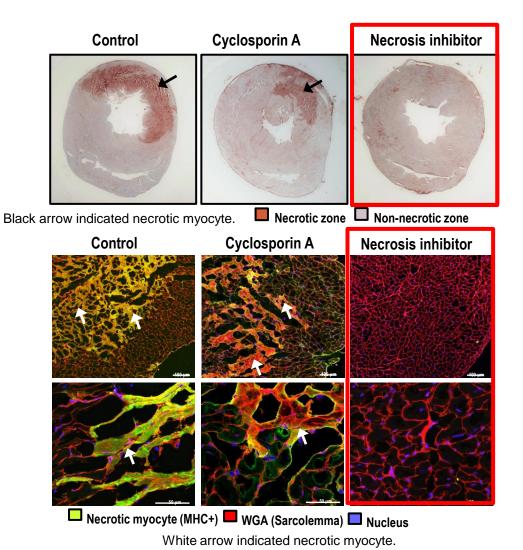

Necrosis Inhibitor (over 30minutes)

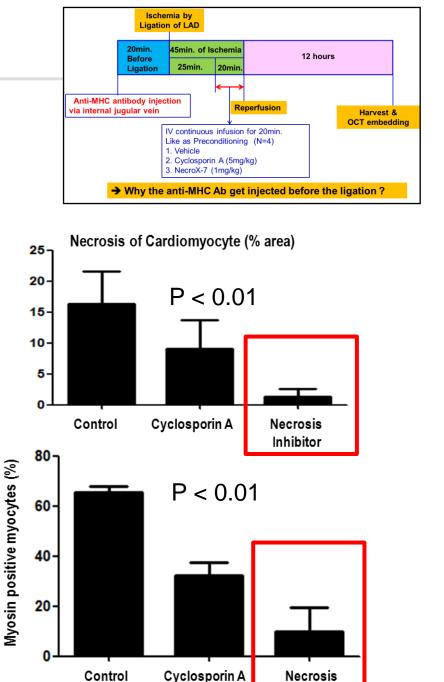
[NecX-treated H9C2 cells]



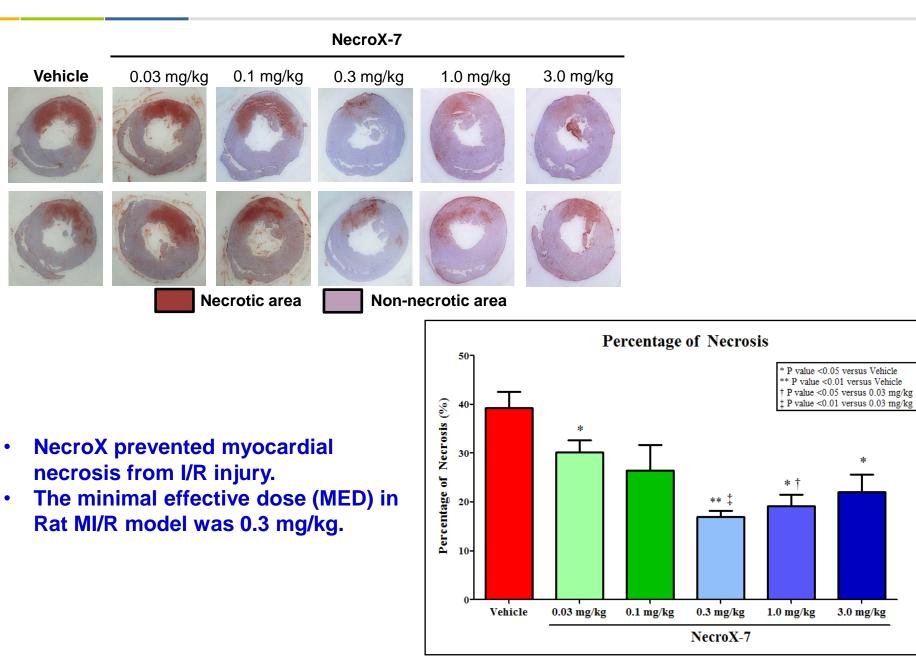

- * Condition: Hypoxia (24hrs) Reoxygenation (90mins)
- * Red (Rhod-2 fluorescence): free Ca2+ level

* Green (Mitotracker): mitochondrial shape H9C2 cells pretreated with necrosis inhibitor (NecX) showing minimal increase in Ca2+ influx and preserved mitochondrial shapes. In vivo Design


Necrosis inhibitor

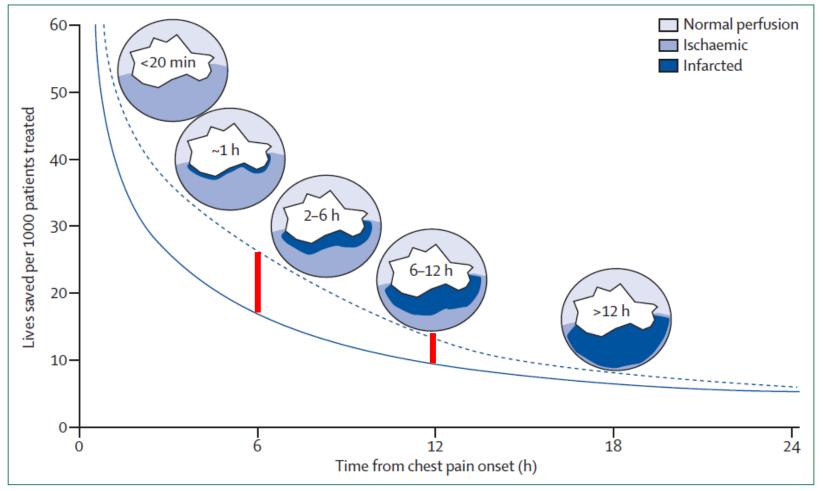


Necrosis inhibitor

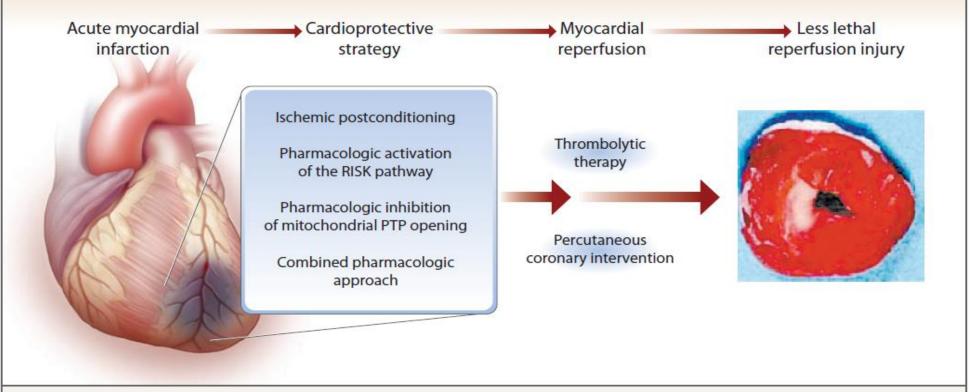

Quantification for Necrosis

Inhibitor

Necrosis inhibitor: dose finding preclinical study


Necrosis inhibitor: clinical trials

<u>Phase 1.</u> 건강한 남성 피험자를 대상으로 LC28-0126의 안전성, 내약성 및 약동학적 특성을 평가하기 위한 용량군별 무작위배정, 이중눈가림, 위약대조, 단회투여, 단계적 증량 제 1상 임상시험


Phase 2a. ST분절 상승 심근경색(ST-segment Elevation Myocardial Infarction) 환자를 대상으로 경피적 관상동맥 중재술 (Percutaneous Coronary Intervention, PCI) 전, LC28-0126을 단회 정맥 주사 시 효능, 안전성 및 약동학적 특성을 평가하기 위한 다기관, 무작위 배정, 병행설계, 이중눈가림, 위약 대조, 임상 2상 시험

Benefit of Reperfusion & Prevention of IR injury

- Solid line: the benefit of reperfusion in terms of lives saved at 35 days
- Dotted line: relation between an effective cardioprotective intervention and reperfusion

Cardio-protection before reperfusion

The mitochondrial PTP is a nonselective channel of the inner mitochondrial membrane. Opening the channel collapses the mitochondrial membrane potential and uncouples oxidative phosphorylation, resulting in ATP depletion and cell death.

During myocardial ischemia, the mitochondrial PTP remains closed, only to open within the first few minutes after myocardial reperfusion in response to mitochondrial Ca2+ overload, oxidative stress, restoration of a physiologic pH, and ATP depletion.

Therefore, the mitochondrial PTP is a critical determinant of lethal reperfusion injury, and as such it is an important new target for cardioprotection.

Thank you for your attention 경청해 주셔서 감사합니다

111

SNUH

서울대학교병원

Reperfusion Injury: How Can We Reduce It?

Hyun-Jai Cho, M.D., Ph.D

Cardiovascular Center & Department of Internal Medicine Seoul National University Hospital

--- 2016. 4. 15.

RICT Innovative Research Institute for Cell Therapy